본문 바로가기 대메뉴 바로가기
정영미 교수

Youngmee Jung

INFO

  • 소속캠퍼스한국과학기술연구원 스쿨
  • 전공 바이오-메디컬 융합
    (의공학)
  • 연락처02-958-5348
  • 출신전공의용생체공학
  • 학위박사
  • 최종출신대학서울대학교
  • 이메일

연구분야

조직공학, 줄기세포공학, 기능성하이드로젤, 생체재료

Tissue engineering, stem cell engineering, functional hydrogels, biomaterials

대표연구실적

-  Sungmin Hong†, Youngmee Jung†, Ringo Yen, Hon Fai Chan, Kam W Leong, George A Truskey*, and Xuanhe Zhao* (†equally contributed)/Magenetoactive sponges for dynamic control of microfluidic flows in microphysiological systems/Lab chip/201403 -  김지은, 이상목, 김수현, Phil Tatman, Albert O Gee, 김덕호, 이경은, 정영미*, 김상준* (*공동교신)/Effect of self-assembled peptide?mesenchymal stem cell complex on the progression of osteoarthritis in a rat model/Int J Nanomed/201405 -  정영미, 정용일, 김상헌, 태기융, 김영하, 이종원, 김상헌, 김수현/In Situ Chondrogenic Differentiation of Human Adipose Tissue Derived Stem Cells in TGF-β1?loadedTGF-β1 loaded nanoparticle?Fibrin-PLCL complex/Biomaterials/200909

논문(최근 5년)

-  In situ recruitment of human BMSCs using chemokines for articular cartilage regeneration[CELL TRANSPLANTATION,2014-04-22] -  High-throughput production of human mesenchymal stem cell spheroids with controllable microenvironment via double-emulsion based droplet microfluidics[Scientific Reports,2013-12-01] -  Behavior and differentiation studies of hASCs and rBMSCs by the γ -ray irradiation[Tissue Engineering and Regenerative Medicine,2013-11-18] -  A Controlled Pulsatile Pressure Bioreactor for Tissue-engineered Vascular Grafts Based on a PLCL Electrospun Scaffold; Cell Matrix Engineering[ARTIFICIAL ORGANS,2013-07-03] -  A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts[Journal of biomaterials science, Polymer edition,2012-12-01] -  Endothelial differentiation and vasculogenesis induced by three-dimensional adipose-derived stem cells[The anatomical record : advances in integrative anatomy and evolutionary biology.,2013-01-01] -  Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment[Scientific Reports,2013-12-01] -  Fabrication and medical applications of lotus-leaf-like structured superhydrophobic surfaces [폴리머 = Polymer(Korea),2013-07-01] -  An Advanced Class of Bio-Hybrid Materials: Bionanocomposites of Inorganic Clays and Organic Stereocomplex Polylactides[Macromolecular materials and engineering,2013-03-01] -  Elastic, Double-layered Poly(L-lactide-co-ε-caprolactone) Scaffold for Long-term Vascular Reconstruction[Journal of bioactive and compatible polymers,2013-05-01] -  Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems[Lab on a chip,2014-02-01] -  Preparation of enhanced hydrophobic poly(L-lactide-co-ε-caprolactone) films surface and its blood compatibility[Applied surface science,2013-07-01] -  Synergistic Effect of Biochemical Factors and Strain on the Smooth Muscle Cell Differentiation of Adipose-Derived Stem Cells on an Elastic Nanofibrous Scaffold[Journal of biomaterials science, Polymer edition,2012-12-01] -  Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts[Cytotherapy,2013-05-01] -  Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model[Biomaterials,2013-02-01] -  Mechanical Properties of Compliant Double Layered Poly(L-lactide-co-ε-caprolactone) Vascular Graft[Macromolecular research,2013-08-01] -  Melt stability of 8-arms star-shaped stereocomplex polylactide with three-dimensional core structures[Polymer degradation and stability,2013-05-01] -  Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing[Stem cell research & therapy,2013-12-01] -  Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-L-lactide-co-ε-caprolactone) for mechano-active tissue engineering[Journal of biomaterials science, Polymer edition,2013-04-01] -  A Biocompatible Tissue Scaffold Produced by Supercritical Fluid Processing for Cartilage Tissue Engineering[Tissue engineering. Part C, Methods.,2013-03-01] -  Fibroblast culture on poly(L-lactide-co-ε-caprolactone) an electrospun nanofiber sheet[Macromolecular research,2012-12-01] -  Effect of self-assembled peptide-mesenchymal stem cell complex on the progression of osteoarthritis in a rat model[International journal of nanomedicine,2014-01-01] -  Behavior and Differentiation Studies of hASCs and rBMSCs by the γ-ray Irradiation[Tissue Engineering and Regenerative Medicine,2014-02-01] -  Biodegradable Stereocomplex polylactide having flexible ε-caprolactone unit[Macromolecular research,2013-09-01] -  Preparation of Topographically Modified Poly(L-lactic acid)-b-Poly(ε-caprolactone)-b-Poly(L-lactic acid) Tri-Block Copolymer Film Surfaces and Its Blood Compatibility[Macromolecular research,2014-11-01] -  Therapeutic Effects of Neuropeptide Substance P Coupled with Self-Assembled Peptide nanofibers on the Progression of Osteoarthritis in a Rat model[Biomaterials,2015-10-01] -  Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels[Scientific Reports,2015-10-01] -  A Faster approach for the stereocomplex formation of high molecular weight polylactide using supercritical Dimethyl ether[폴리머 = Polymer(Korea),2015-06-01] -  Strategies for Recruitment of Stem Cells to Treat Myocardial Infarction[Current pharmaceutical design,2015-04-01] -  In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels[Journal of bioscience and bioengineering,2015-07-01] -  Self-Assembling Peptide Nanofibers Coupled with Neuropeptide Substance P for Bone Tissue Engineering[Tissue engineering. Part A.,2015-04-01] -  TGF-β3 encapsulated PLCL scaffold by a supercritical CO2?HFIP co-solvent system for cartilage tissue engineering[Journal of controlled release ,2015-05-01] -  In Situ Recruitment of Human Bone Marrow-Derived Mesenchymal Stem Cells Using Chemokines for Articular Cartilage Regeneration.[Cell transplantation,2015-06-01] -  Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis[Tissue engineering. Part A.,2016-04-01] -  Transdifferentiation of human endothelial progenitors into smooth muscle cells[Biomaterials,2016-04-01] -  The effect of stereocomplex polylactide particles on the mechanical properties of poly (lactide-co-glycolide) copolymer[Journal of bioactive and compatible polymers,2016-01-01] -  Therapeutic Effects of Neuropeptide Substance P Coupled with Self-Assembled Peptide nanofibers on the Progression of Osteoarthritis in a Rat model[Biomaterials,2016-01-01] -  Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair[Biomaterials,2016-06-01] -  Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration[Journal of biomedical materials research. Part A,2016-06-01]

특허(최근 5년)

-  초임계 유체-유기용매 시스템을 이용한 다공성 생분해성 고분자 지지체의 제조방법[2014-04-11] -  줄기세포 동원 활성을 가지는 폴리펩타이드[2014-04-10] -  기계적 강도 및 열적안정성이 향상된 생분해성 공중합체의 입체이성질 복합체 및 그의 제조방법[2014-04-04] -  인공혈관용 체외 바이오 리액터[2014-03-19] -  초소수성 표면을 갖는 이식재 및 이의 제조 방법[2014-02-12] -  줄기세포의 연골 분화 유도 활성을 가지는 폴리펩타이드[2013-12-30] -  응력을 가하여 줄기세포를 평활근세포로 분화시키는 방법 및 평활근세포를 함유하는 조 직공학용 복합체[2013-12-18] -  유연한 폴리락티드 입체이성질 복합체의 제조방법 및 이의 방법에 의해 제조된 화합물[2013-10-01] -  초임계 유체-유기용매 시스템을 이용한 점토/고분자 복합체 제조 방법[2013-07-04] -  생분해성 고분자 소재의 제조방법 생분해성 고분자 소재 및 이를 이용하여 제조한 뼈 조직 고정용 제품[2013-05-02] -  유연한 폴리락티드 입체이성질 복합체의 제조방법 및 이의 방법에 의해 제조된 화합물[2013-10-01] -  초임계 유체-유기용매 시스템을 이용한 점토/고분자 복합체 제조 방법[2013-07-04] -  초소수성 표면을 갖는 이식재 및 이의 제조방법[2014-02-12] -  생분해성 고분자 소재의 제조방법, 생분해성 고분자 소재 및 이를 이용하여 제조한 뼈 조직 고정용 제품[2013-04-19] -  줄기세포의 연골 분화 유도 활성을 가지는 폴리펩타이드[2013-12-30] -  줄기세포를 혈관세포로 분화시키는 방법 및 이를 이용한 생체 내 혈관신생 유도[2013-05-06] -  인공혈관용 체외 바이오 리액터[2014-03-10] -  줄기세포 동원 활성을 가지는 폴리펩타이드[2014-04-01] -  초임계 유체-유기용매 시스템을 이용한 다공성 생분해성 고분자 지지체의 제조방법[2014-04-11] -  기계적 강도 및 열적안정성이 향상된 생분해성 공중합체의 입체이성질 복합체 및 그의 제조방법[2014-03-25] -  응력을 가하여 줄기세포를 평활근세포로 분화시키는 방법 및 평활근세포를 함유하는 조직공학용 복합체[2013-12-18] -  초임계 유체-유기용매 시스템을 이용한 생분해성 고분자 입체 이성질 복합체의 제조 방법 및 그로부터 제조된 고분자 입체 이성질 복합체[2014-05-06] -  광섬유 기반 표면 플라스몬 바이오 센서 및 광섬유 기반 검출방법[2014-11-03] -  유연한 폴리락티드 입체이성질 복합체의 제조방법 및 이의 방법에 의해 제조된 화합물[2014-11-18] -  인공혈관용 구조물 및 이것의 제조방법[2016-01-18] -  초소수성 표면을 갖는 이식재 및 이의 제조방법[2016-06-07]